From 1 - 3 / 3
  • The ESA PolarGap airborne gravity, lidar/radar and aeromagnetic survey was carried out in Antarctica in the field season 2015/16. The purpose of the 2015/16 ESA PolarGAP airborne survey of the South Pole region was to fill the gap in satellite gravity coverage, enabling construction of accurate global geoid models. Additional radar flights over the Recovery Lakes for the Norwegian Polar Institute (NPI) were carried out as part of the same survey, but included collection of airborne gravity. Gravity data were collected using two complimentary systems. The primary system was a ZLS-modified Lacoste and Romberg (LCR) gravimeter (S-83) which gives exceptionally low and predictable long term drift. The secondary system was high specification inertial navigation system (iMAR RQH-1003), provided by TU Darmstadt, capable of resolving gravity anomalies even under turbulent conditions, but more prone to instrument drift. Results from both systems were merged to give a unified best product. The aircraft used was the BAS aerogeophysicaly equipped twin otter VP-FBL. Data are available as an ASCII table (.csv).

  • The ESA PolarGap airborne gravity, lidar/radar and aeromagnetic survey was carried out in Antarctica in the field season 2015/16. The purpose of the 2015/16 ESA PolarGAP airborne survey of the South Pole region was to fill the gap in satellite gravity coverage, enabling construction of accurate global geoid models. Additional radar flights over the Recovery Lakes for the Norwegian Polar Institute (NPI) were carried out as part of the same survey. In conjunction with the primary datasets aeromagnetic data was collected opportunistically, to provide new insights into the subglacial geology. Data were collected using a caesium magnetometer system, and have been corrected to total field values following the approach laid out by the SCAR ADMAP working group (http://admap.kopri.re.kr/ADMAP-2_SCR_27Aug13.pdf). The aircraft used was the BAS aerogeophysicaly equipped twin otter VP-FBL. Data are available as an ASCII table (.csv).

  • This dataset contains the position and depth (ice thickness) of three spatially-extensive Internal Reflecting Horizons (IRHs) mapped from ice-penetrating radar data acquired with the British Antarctic Survey''s PASIN and PASIN2 ice radar systems across central East Antarctica. The dataset extends geographically from Dome A to South Pole. Using previous dated IRHs from Winter et al (2019), an independent validation of IRH ages from the South Pole ice-core chronology and a 1-D steady-state model, we assigned ages to our three IRHs: (H1) 38.5 +/- 2.2 ka, (H2) 90.4 +/- 3.57, and (H3) 161.9 +/- 6.76 ka. This study was motivated by the AntArchitecture Action Group of the Scientific Committee for Antarctic Research (SCAR). The project was supported by the National Environmental Research Council (NERC)-funded ONE Planet Doctoral Training Partnership (NE/S007512/1), hosted jointly by Newcastle and Northumbria Universities. The authors thank the BAS science and logistics teams for acquiring both the AGAP PASIN and PolarGAP PASIN2 data which is fully available on the Polar Airborne Geophysics Data Portal of the UK Polar Data Center (https://www.bas.ac.uk/project/nagdp/). BedMachine (version 2) data are available at https://doi.org/10.5067/E1QL9HFQ7A8M.